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Abstract. Earth System Models (ESMs) are heavily used to provide inputs to impact and multisectoral dynamic models. 
Therefore, representing the full range of model uncertainty, scenario uncertainty, and interannual variability that ensembles 
of  ESMs capture, is critical to the exploration of the future co-evolution of the integrated human-Earth system. The pre-
eminent source of these ensembles has been the Coupled Model Intercomparison Project (CMIP).  With more modeling 10 
centers participating in each new CMIP phase, the size of the ESM archive is rapidly increasing, which can be intractable for 
impact modelers to effectively utilize due to computational constraints and the challenges of analyzing large datasets. In this 
work, we present a method to select a subset of the latest phase, CMIP6, models for use as inputs to a sectoral impact or 
multisectoral models, while still representing the range of model uncertainty, scenario uncertainty, and interannual 
variability of the full CMIP6 ESM results. This method is intended to help human-relevant impact and multisectoral 15 
modelers select climate information from the CMIP archive efficiently. This is particularly critical for large ensemble 
experiments of multisectoral dynamic models that may be varying additional features beyond climate inputs in a factorial 
design, thus putting constraints on the number of climate simulations that can be used. We focus on temperature and 
precipitation outputs of ESMs, as these are two of the most used variables among impact models and many other key input 
variables for impacts are at least correlated with one or both of temperature and precipitation (e.g. relative humidity). 20 
Besides preserving the multi-model ensemble variance characteristics, we prioritize selecting ESMs in the subset that 
preserve the very likely distribution of equilibrium climate sensitivity values as assessed by the latest IPCC report. This 
approach could be applied to other output variables of ESMs and, when combined with emulators, offers a flexible 
framework for designing more efficient experiments on human-relevant climate impacts. It can also provide greater insight 
into the properties of existing ESMs and the method may be informative for future experiment planning across ESMs.  25 
 

1 Introduction 

The future evolution of the integrated human-Earth system is highly uncertain, but one common 
approach to begin addressing this uncertainty is to use outputs from a variety of computationally 
expensive, highly detailed process-based Earth System Models (ESMs) run under different scenarios. 30 
This approach has been facilitated by the Couple Model Intercomparison Project (CMIP) (Eyring et al. 
2016), which has organized experiments that are standardized across modeling centers. Scenario 
simulations from CMIP (most recently through ScenarioMIP, (O’Neill et al. 2016) are commonly used 
as inputs to downstream sectoral impact and multisector dynamic models, both by individual modeling 
efforts and by large, coordinated impact modeling projects, like AgMIP or  ISIMIP (e.g. (Rosenzweig et 35 
al. 2013; Rosenzweig et al. 2014; Warszawski et al. 2014; Frieler et al. 2017)). Using such multi-model 
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ensembles captures the process and structural uncertainties represented by sampling across ESMs, 
scenario uncertainty, and, to the extent that an ESM runs multiple initial condition ensemble members 
for a scenario, internal variability of the individual ESM (Hawkins and Sutton 2009; Hawkins and 
Sutton 2011; Lehner et al. 2020). These Earth system uncertainties can then be propagated through an 40 
impact model (perhaps after bias-correction (Lange 2019)) to understand possible human-relevant 
outcomes. 
 
From the Earth system modelers who produce climate data to the impact and multisectoral dynamic 
modelers who use it, each step in this process is computationally expensive. For Earth system modelers, 45 
variability across ESMs’ projections of future climate variables can be significant (Hawkins and Sutton 
2009; Hawkins and Sutton 2011; Lehner et al. 2020) and so the participation of multiple modeling 
centers running multiple scenarios is critical to understanding the future of the Earth system. Further, 
statistical evaluation (Tebaldi et al. 2021) suggests that 20-25 initial condition ensemble members for 
each scenario an ESM provides are needed to estimate the forced component of extreme metrics related 50 
to daily temperature and precipitation, which are key inputs to many impacts models covering 
hydrological, agricultural, energy and other sectors. Fortunately, emulation of ESM outputs to infill 
missing scenarios and enrich initial condition ensembles continues to improve (Beusch, Gudmundsson, 
and Seneviratne 2020; Nath et al. 2022; Quilcaille et al. 2022; Tebaldi, Snyder, and Dorheim 2022). 
This suggests that ESMs don’t necessarily have to provide all of the runs desired for capturing possible 55 
futures, but instead a subset of scenarios including initial condition ensembles for emulator training. 
However the total burden across modeling centers to sample across ESMs and scenarios still remains 
high, even with this potential efficiency. Impact modelers often seek to understand future climate 
impacts in the context of ESM  uncertainty by using the outputs of multiple ESMs under multiple 
scenarios as inputs to impact models (e.g. (Prudhomme et al. 2014; Müller et al. 2021)). In a world 60 
unburdened by time and computing constraints, an impact model would take as input every projected 
data set available to have a full understanding of possible outcomes. Our world includes those burdens, 
and when models require bias-corrected input climate data, the computational expense for impact 
modelers and the broader community only grows. This can quickly become an intractably-sized set of 
runs to perform and analyze for impact modelers.  For the multisectoral dynamics community, whose 65 
modelers often attempt to integrate results from multiple impact models to understand interactions of 
different sectors of the integrated human-Earth system (Graham et al. 2020) this challenge multiplies. 
Finally, multisectoral dynamic models are beginning to run large ensemble experiments that vary 
additional features beyond climate inputs in a factorial design (e.g. (Dolan et al. 2021, 2022; Guivarch 
et al. 2022)) further adding to the computational costs to be faced. 70 
 
For all communities involved, an efficient way to design and then use ESM runs is critical. 
While there is likely no perfect solution to balance the tension between these competing priorities, this 
work describes a method for selecting a subset of CMIP6 models that still faithfully represents the 
uncertainty characteristics of the entire data set, particularly in dimensions relevant to impact and 75 
multisectoral modelers. The subset of ESMs outlined here is merely one approach to make 
understanding the future of the human-Earth system more tractable. The calculations described in this 
paper may also serve as a useful characterization of ESM behavior for modelers in other contexts. 
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Finally, many of the choices made in implementing this method may be adaptable for other uses or 
priorities. We also briefly discuss ways that this work can be leveraged by Earth system modelers in 80 
future comparison exercises to more efficiently identify specific ESMs to focus on larger initial 
condition ensembles. 

2 Methods 

The overall steps of this method are summarized in Table 2. Sections 2.1 and 2.2 provide fuller details 
building up the method and justifying choices. Table 2 especially highlights the choices made for this 85 
particular effort, based on the authors’ experience with multisectoral impact modeling. It is likely that 
the approach could be adapted with different regions of interest, indices of behavior, or ESM output 
variables, although validation of results in these cases would be necessary.  

2.1 Data preparation and characterization 

Impact models often require multiple output variables from an ESM on daily or monthly time scales, 90 
with temperature and precipitation being the most common variables needed. For tractability, we focus 
on the IPCC WG1 non-arctic land regions (Iturbide et al. 2022), as these regions are primarily where 
humans live, consume water, generate electricity, and grow food. I.e., the places most relevant in 
multisectoral models of the integrated human-Earth system. We also limit ourselves to ESMs that 
completed all four ScenarioMIP Tier 1 experiments (Table 1). This still results in more than 600 95 
trajectories across models, scenarios, and ensemble members for each region.  In this work, we are 
treating this collection of ESMs and scenario results in these regions as the full set of data of which we 
would like to faithfully represent the uncertainty characteristics, and then select a subset of ESMs for 
impact modelers to use, based on preserving those characteristics.  
 100 
 
Table 1. Models and scenarios making up the full set of data, as well as their equilibrium climate sensitivity (ECS) values sourced 
from (Meehl et al. 2020; Lovato et al. 2022; Scafetta 2022). 

ESM ECS SSP126 Ensemble 
size 

SSP245 Ensemble 
size 

SSP370 Ensemble 
size 

SSP585 
Ensemble 
size 

ACCESS-CM2 4.7 5 5 5 5 

ACCESS-
ESM1-5 

3.9 40 10 30 40 

BCC-CSM2-
MR 

3.0 1 1 1 1 
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CAMS-CSM1-0 2.3 2 2 2 2 

CESM2 5.2 3 3 3 3 

CESM2-
WACCM 

4.8 1 3 1 3 

CMCC-CM2-
SR5 

3.52 1 1 1 1 

CMCC-ESM2 3.57 1 1 1 1 

CanESM5 5.6 25 25 25 25 

EC-Earth3-Veg-
LR 

 
3 3 3 3 

FGOALS-f3-L 3.0 1 1 1 1 

FGOALS-g3 
 

4 4 4 4 

GFDL-ESM4 2.6 1 3 1 1 

INM-CM4-8 1.8 1 1 1 1 

INM-CM5-0 1.9 1 1 5 1 

IPSL-CM6A-LR 4.6 6 11 11 6 

MIROC6 2.6 50 33 3 50 

MPI-ESM1-2-
HR 

3.0 2 2 10 2 

MPI-ESM1-2-
LR 

3.0 10 10 10 10 

MRI-ESM2-0 3.2 5 5 5 5 

NorESM2-MM 2.5 1 2 1 1 

UKESM1-0-LL 5.3 13 14 13 5 
 
For each scenario and region in each ESM, we extract the ensemble-average temperature and 105 
precipitation outputs:  mid-century (2040-2059) average anomaly relative to that ESM’s historical 
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average (1995-2014), the end of century (2080-2099) anomaly relative to historical average, and the 
interannual standard deviation. These six indices (three for each of temperature and precipitation) per 
ESM-scenario-region combination are selected to result in data that represents the model uncertainty, 
scenario uncertainty, and interannual variability of our full set of data. The key question then, is how to 110 
efficiently characterize this collection of data in a way that suggests an efficient subsampling of models 
that still preserves the main dimensions of variations of the full ensemble.  
 
This full data can be written as a matrix A with 22 ESM * 4 Scenarios =88 rows and 6 indices * 43 
IPCC regions = 258 columns. Principal components analysis (PCA) is then a natural technique to 115 
understand the variance of this full data set by forming the covariance matrix S = ATA. The eigenvectors 
of S are a set of orthogonal basis vectors (each vector is length 258) that are ordered by how much 
variance of the full data each eigenvector explains. Mathematically, this means that each row of A, 
({𝑎!###⃗ |𝑖 = 1…88}) representing the indices in all regions for a single ESM-scenario) can be projected 
into the space of eigenvectors ,𝑃𝐶!######⃗ /𝑖 = 1…88}  and written as 𝑎!###⃗ = Σ"𝑐#" 	𝑃𝐶$######⃗   120 
for projection coefficients (coordinates in the basis of eigenvectors), 𝑐#". Thus 𝑃𝐶%#######⃗ , for example 
represents some pattern of joint, spatiotemporal temperature and precipitation behaviors that explains 
the greatest variance across ESM-scenario observations. Each CMIP6 model-scenario combination has 
some contribution from this pattern described by its projection coefficient, 𝑐#%. This projection can be 
done over all eigenvectors, or as is common with PCA, a small subset of the eigenvectors that explain 125 
the majority of variance. Figure 1 is a plot of the fraction variance explained by each of the first 15 
eigenvectors. Based on this figure, we restrict ourselves to the first five eigenvectors for projections, 
explaining 71.8% of variance.    
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Figure 1: fraction of variance explained by each eigenvector for the full set of data, for the first 15 eigenvectors. 130 

 
Figure 2 is a visual representation of these five eigenvectors. Each row is a map of all six indices for 
each vector. 𝑃𝐶%#######⃗   is dominated by temperature and, to a lesser extent, high latitude precipitation, 
highlighting that these features are responsible for 38.7% of the total variance of our full set of data 
(from Fig. 1). 𝑃𝐶&#######⃗   is dominated by temperature interannual variability and high latitude precipitation 135 
interannual variability.  𝑃𝐶'#######⃗ 	 to 𝑃𝐶(#######⃗   feature a mix of the indices, with strong emphasis on precipitation 
related behaviors. Note that because we treated temperature and precipitation indices together in one 
matrix, the eigenvectors include joint temperature-precipitation behaviors that may be missed if the 
variables were treated separately. 
 140 
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Figure 2: Maps of the first five eigenvectors of our full data. Each row is a single eigenvector, with maps presented for each of the 
six indices. Note that the colorbar scales are all standardized. A larger, landscape-oriented version of this figure is included in 
Appendix A (Fig. A1) for easier inspection. 

 145 

By treating the span of these five eigenvectors as the representative space of full data, we can project all 
data into this space and visualize its behavior by two-dimensional plots of all five PCs combinations. 
Figure 3 shows these 2-d slices of the projection coefficients for each ESM and scenario into this space. 
If an impact modeler wished, they could run every model-scenario combination here for all available 
ensemble members. In practice, however, this may not be computationally tractable to either run or 150 
analyze. This view also motivates our approach for selecting our subset of Earth System Models that 
preserve the uncertainty characteristics defined by this space.  
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Figure 3: 2-d slices of the projection coefficients for each ESM-scenario combination into the space spanned by the first five 155 
eigenvectors. 

 
 

2.2 Selection criteria of subset of ESMs 

The subset of ESMs that minimizes distance to all other ESMs across this five-dimension space is the 160 
subset selected. In more detail, first, subsets of candidate ESMs are formed (in this work, five ESMs per 
subset, but the approach can be applied to any number of ESMs that we target as our subset size). While 
it would be possible to consider any combination of 5 ESMs from the full set of 22, in this work we add 
a pre-filtering step. From all 22 choose 5 potential subsets, we only consider as candidate subsets of 
ESMs those that roughly preserve the IPCC distribution of equilibrium climate sensitivity values (Core 165 
Writing Team & (eds.), 2023; Lovato et al., 2022; Meehl et al., 2020; Scafetta, 2022). Then for each 
subset, we step through each non-candidate ESM and calculate the minimum Euclidean distance to any 
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candidate ESM’s coefficients. The summary metric for each subset of candidates is then the average 
over all non-candidate ESM minimum distances, and the subset of candidate ESMs with the smallest 
summary metric is the selected subset. Unlike many metrics (e.g. (Nash & Sutcliffe, 1970; Tebaldi et 170 
al., 2020)), there is unfortunately not a clear threshold for ‘good enough’ performance based on this 
metric and so in the results section, we provide further validation that the selected subset of ESMs for 
this setup is successful at preserving many of the major characteristics of the full data’s uncertainty 
characterizations. 
 175 
 
Table 2. Summary of method 

Step Description Additional notes for this work 

1 Identify relevant ESM output variables  Temperature, precipitation 

2 Aggregate gridded time series to region-levels  IPCC WG1 non-arctic land 

3 Identify and extract region indices for each variable, for 
each ESM-Scenario to capture characteristics of 
uncertainty of interest 

Ensemble averaged: Mid-century 
anomaly, end of century anomaly, 
interannual standard deviation 

4 Form a matrix of  ESM*Scenario rows and 
Region*Indices columns for the full data and perform 
PCA; identify number of eigenvectors, N, responsible 
for majority of variance 

N=5 eigenvectors 

5 Create candidate subsets of ESMs based on heuristic 
filters of interest 

ESM subset size = 5; heuristic filter is 
that each subset must preserve the 
IPCC distribution of equilibrium 
climate sensitivity. 

6 Calculate the summary metric for each subset and 
select the subset with the smallest value 

Minimize distance from out-of-subset 
ESMs to a subset ESM across the N=5 
dimensions. 

3 Results and discussion 

The selected subset of ESMs and their respective ECS values are provided in Table 3 and Fig. 4, which 
is identical to Fig. 3 but with the selected ESMs highlighted by black box outlines. We provide more 180 
quantitative validation in Section 3.1 based on the work of Hawkins and Sutton (Hawkins & Sutton, 
2009, 2011). 
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Table 3. Selected ESM subset and ECS values 

ESM ECS 

ACCESS-CM2 4.7 

ACCESS-ESM1-5 3.9 

BCC-CSM2-MR 3.0 

MIROC6 2.6 

MRI-ESM2-0 3.2 
 185 

 

Figure 4: Same as Figure 3 but with the selected ESMs highlighted by black box outlines. 
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3.1 Validation 

As noted in the introduction, the partitioning of uncertainty calculated by Hawkins and Sutton (Hawkins 
& Sutton, 2009, 2011) was critical in motivating this work and selecting regional indices of ESM 190 
behavior that address the different partitions for both temperature and precipitation. As we did not 
calculate the specific time series of Hawkins and Sutton (HS) fractions for internal variability (there, as 
here, quantified as interannual variability after detrending the annual mean time series), scenario 
uncertainty, and model uncertainty to form any part of our selection procedure, we can use these HS 
fractions as independent validation criteria. We calculate the time series of HS fractions for temperature 195 
and precipitation separately in each region, for the full set of data and over just our selected subset of 
data, i.e., over the full CMIP6 ensemble we started from, and only using the subset of 5 ESMs that our 
method identified. Details of these calculations are provided in Appendix B. To manage the inspection 
of three time series for each of 86 region-variable combinations, we use root mean square error (RMSE) 
to compare the full data time series and the subset data time series from 2040 onward (as that is the 200 
focus of our indices) for each uncertainty partition, for each variable in each region.  
 
To identify specific region-variable combinations that are due for closer inspection, we set a threshold 
on the RMSE values for each uncertainty partition for each region-variable combination. If any of the 
three uncertainty partitions have RMSE>0.1, we flag that region-variable combination for closer 205 
inspection. While thresholds like this are often arbitrary to set, each uncertainty partition for the subset 
data explaining the fraction of total variance within 10% of the full data’s partition seems a good place 
to start. We show in Appendix A the results of a less stringent choice. Lowering this threshold will of 
course flag more region-variables combinations, but as we point out below, a portion of the 
combinations flagged with a threshold of 0.1 still actually perform reasonably when plotted over time. 210 
Figure 5 provides a color-coded map of regions where temperature, precipitation, both, or neither have 
RMSE <= 0.1 for all three uncertainty partitions to give a sense of the spatial extent of performance. 54 
of the 86 total region-variable combinations perform well based on this criterion alone. Note that many 
of these through Europe and East Asia are significant agricultural producers, regions where impacts 
often have critical implications for other regions and sectors in an integrated, multisectoral system. 215 
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Figure 5. a color-coded map of regions where temperature, precipitation, both, or neither have RMSE <= 0.1 for all three 
uncertainty partitions. 

 220 
The time series of HS fractions for the remaining 32 region-variable combinations for which RMSE > 
0.1 are plotted in Figure 6 (temperature in 14 regions) and Figure 7 (precipitation in 18 regions bottom 
panel). For temperature, we see that interannual variability is often performing well, with increasingly 
better performance over time? over time. The partitioning of model and scenario uncertainty is where 
the subset of ESMs begins to depart from the full data, although this too tends to have smaller 225 
discrepancies as time goes on. This is not surprising: in the full set of data, a good portion of model 
uncertainty is driven by different ECS values. As provided in Table 1, the values across ESMs that 
participated in tier 1 ScenarioMIP experiments do not match the IPCC very likely distribution. By 
contrast, we are only selecting subsets of ESMs that match this distribution, accounting for the 
departure. What we want to see, rather, is a qualitative agreement with the relevance of the three 230 
sources of uncertainty in the full ensemble. According to this criterion, most of the regions flagged by 
the application of the 0.1 threshold remain consistent with the full ensemble representation of the three 
uncertainty sources. Most frequently, regions feature a larger portion from interannual variability and a 
lesser portion from model uncertainty, again not surprisingly given our choice to reshape the 
distribution of ECS. For many of these regions (CNA, EAU, EEU, MDG, NAU, NCA, NSA, NWS, 235 
SCA, SES, WNA, WSB) the behavior of our subset approximates the full ensemble increasingly better 
as we move towards the later portion of the century. In Appendix A, we show the effect of relaxing the 
threshold to 0.2, resulting in nearly the full set of region/variable combinations passing our test (Fig. 
A2-A4). 
 240 
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Figure 6: Regions flagged for closer inspection of their HS fraction time series for temperature. The color-blocked time series are 
the HS fractions from the full set of data, and the white curves overlaid are the respective boundaries for the subset data’s 
uncertainty partitions. 245 
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Figure 7: Same as Figure 6 but for precipitation. 

 

4 Conclusions 250 

This work outlines and documents the success of a method for selecting a subset of ESMs from CMIP6 
that overall preserve the uncertainty characteristics of the full set of CMIP data. Our methodology relies 
on pre-identifying regional indices of behavior for ESM output variables, as well as other filters (such 
as prioritizing preserving the IPCC distribution of ECS values) that are key to impact and multisectoral 
models. With these assumptions, far fewer climate inputs are needed to span the range of uncertainties 255 
seen in CMIP6, resulting in fewer impact model runs needing to be performed and analyzed. There are 
likely many situations in which a modeler could adapt the details of the method (outlined in Table 2) 
and code for their purposes, re-run to identify a subset of ESMs, and validate that new subset in much 
less time and with much fewer computing resources needed than simply running impact models with all 
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scenarios and ensemble members available for the 22 ESMs documented in Table 1. For multisectoral 260 
modelers integrating multiple different impacts, or running large ensemble experiments, the time saved 
only grows, even when accounting for method adjustment and re-validation of results.  
For Earth system modelers, there may be opportunities to identify fewer ESMs that would benefit from 
running more initial condition ensemble members. If all modeling centers performed a small number of 
ensemble members for a set of scenarios, this analysis could be repeated to identify specific models to 265 
run more ensemble members for. This can result in more efficient allocation of total computing 
resources in a model intercomparison exercise. 
 
The methodology outlined in this paper is an adaptable approach to both retain the major uncertainty 
characteristics of a large collection of ESM data and to make changes (as we did to the ECS 270 
distribution). While there are resulting regions for both temperature and precipitation where the 
uncertainty partitions of the subset of ESMs differ from the full set of ESMs, these differences are 
expected based on the different ECS distribution represented by our subset ESMs compared to the full 
data. We hope that by providing detailed information about where the subset differs in Figures 5-7, 
impact modelers may be able to infer how results would change if the full set of data were used, with far 275 
lower computational burden than running all available data. Further, because the method is adaptable, 
an impact modeler particularly interested in a specific region could weight the outcomes in that region 
more heavily for selection of the subset.  
 
 280 
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Figure A

1: landscape-oriented version of Figure 2 for easier visual inspection. 

 
285 
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Figure A2: A color-coded map of regions where temperature, precipitation, both, or neither have RMSE <= 0.2 for all three 290 
uncertainty partitions. 
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Figure A3: Same as Figure 6 but for RMS > 0.2 rather than 0.1 

 295 
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Figure A4: Same as Figure 7 but for RMS > 0.2 rather than 0.1. 

Appendix B Hawkins and Sutton uncertainty calculations 

Consider a set of trajectories for a given climate variable produced by various ESMs and scenarios. For 
example, this could be the annual average temperature or precipitation in a given world region. At each 300 
time step, t, there will be variation in the estimates from each observation in the set. The goal for a 
given set is to attribute a proportion of the variation or uncertainty at each time step to one of the three 
sources: interannual variation, model uncertainty, and scenario uncertainty. In our application, we want 
to do this for a “full” model set and compare the distribution of assigned variance to the same analysis 
on a selected subset of models. 305 
 
The crux of this method for separating uncertainty is to write the raw predictions for each observation as 
𝑋),+,, = 𝑥),+,, + 𝑖),+ + ε),+,,, where 𝑋),+,, is the raw prediction for model m scenario s at time t, 𝑥),+,, 
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s a smoothed fit of the variable anomaly with reference period 1995-2014, 𝑖),+ is the average variable 
value over the reference period, and ε),+,, is the residual, representing interannual variation. 310 
 
We can then essentially calculate the interannual variation component as the variance of all ε, the model 
uncertainty component at each time step as the variation in 𝑥 over the different models, and the scenario 
uncertainty at each time step as the variation in 𝑥 over the different scenarios. The variance calculations 
each have a weighting component. Models who more closely match the trend of observational data 315 
(W5E5v2.0 (Lange et al., 2021)) over the historic period will have their observations hold more weight. 
The weighting is as follows: 𝑤) = %

-!"#.|-$0-!"#|
, where 𝑥12+ is the warming observed from 1995-2014 

in the observation dataset (calculated as the difference in the smooth fit polynomial at the ends of that 
period), and 𝑥) is the same thing but for the given model m. Weights are normalized (𝑊) = 3$

∑ 3$$
)	to	

give	the	interannual	variability	component	𝑉 = ∑ 𝑊)) 𝑣𝑎𝑟+,,Pε),+,,Q.		The	model	uncertainty	320 
component	is	𝑀(𝑡) = %

5#
∑ 𝑣𝑎𝑟)6P𝑥),+,,Q+ 	for	the	number	of	scenarios	used	𝑁+	(four	in	this	study)	

and	using	the	weighted	variance	function	(𝑣𝑎𝑟6).	The	scenario	uncertainty	component	is		𝑆(𝑡) =
𝑣𝑎𝑟+P∑ 𝑊)) 𝑥),+,,Q.	
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